Relaxed Pairwise Learned Metric for Person Re-identification
نویسندگان
چکیده
Matching persons across non-overlapping cameras is a rather challenging task. Thus, successful methods often build on complex feature representations or sophisticated learners. A recent trend to tackle this problem is to use metric learning to find a suitable space for matching samples from different cameras. However, most of these approaches ignore the transition from one camera to the other. In this paper, we propose to learn a metric from pairs of samples from different cameras. In this way, even less sophisticated features describing color and texture information are sufficient for finally getting state-of-the-art classification results. Moreover, once the metric has been learned, only linear projections are necessary at search time, where a simple nearest neighbor classification is performed. The approach is demonstrated on three publicly available datasets of different complexity, where it can be seen that state-of-the-art results can be obtained at much lower computational costs.
منابع مشابه
Saliency Weighted Features for Person Re-identification
In this work we propose a novel person re-identification approach. The solution, inspired by human gazing capabilities, wants to identify the salient regions of a given person. Such regions are used as a weighting tool in the image feature extraction process. Then, such novel representation is combined with a set of other visual features in a pairwise-based multiple metric learning framework. F...
متن کاملConstrained Deep Metric Learning for Person Re-identification
Person re-identification aims to re-identify the probe image from a given set of images under different camera views. It is challenging due to large variations of pose, illumination, occlusion and camera view. Since the convolutional neural networks (CNN) have excellent capability of feature extraction, certain deep learning methods have been recently applied in person re-identification. Howeve...
متن کاملPerson re-identification by pose priors
The person re-identification problem is a well known retrieval task that requires finding a person of interest in a network of cameras. In a real-world scenario, state of the art algorithms are likely to fail due to serious perspective and pose changes as well as variations in lighting conditions across the camera network. The most effective approaches try to cope with all these changes by appl...
متن کاملPerson Re-Identification by Common-Near-Neighbor Analysis
Re-identifying the same person in different images is a distinct challenge for visual surveillance systems. Building an accurate correspondence between highly variable images requires a suitable dissimilarity measure. To date, most existing measures have used adapted distance based on a learned metric. Unfortunately, real-world human image data, which tends to show large intra-class variations ...
متن کاملEmbedding Deep Metric for Person Re-identification: A Study Against Large Variations
Person re-identification is challenging due to the large variations of pose, illumination, occlusion and camera view. Owing to these variations, the pedestrian data is distributed as highly-curved manifolds in the feature space, despite the current convolutional neural networks (CNN)’s capability of feature extraction. However, the distribution is unknown, so it is difficult to use the geodesic...
متن کامل